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Abstract

The complex variable boundary element method (CVBEM) is used to analyze conjugate heat transfer in solids

with cooling passages of general, convex cross section. The method is well-suited to duct cross sections with high
curvature and high aspect ratios because the whole-domain boundary integrals are path independent and analytic.
The e�ects of channel boundary curvature on overall heat transfer are quanti®ed for the ®rst time. Shape-
constrained optimal solutions involving ®xed pressure drop and ®xed pump work are presented. Increased channel

boundary curvature is shown to decrease the optimal distance between parallel channels by increasing ®n
e�ciency. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The cooling of high-power electronic devices requires

renewed attention as power dissipation from electronic

components continues to increase. Re¯ecting the trends

in electrical microcircuits, the size of cooling systems

must decrease while power dissipation increases.

Although many di�erent techniques could potentially

provide adequate cooling, small-scale channels

embedded in a solid substrate o�er particular promise

due to their small sizes and high rates of heat transfer.

The present paper provides some constrained optimal

solutions of duct shape for conjugate laminar forced

convection, using a versatile, but accurate, complex-

variable form of the boundary element method.

Much prior work has focused on the prediction and

measurement of heat transfer in small-scale channels

(often called microchannels). Early work by

Tuckerman and Pease [1±3] established a general the-

ory and foundational experiments for microchannel

cooling. Since their work, many others have studied

such systems analytically, experimentally, and compu-

tationally. Philips [4] provided a thorough review of

the literature for years prior to 1990. Since then, many

researchers have studied di�erent aspects of micro-

channel cooling. The most relevant to the present

study is the work by Bau and co-workers [5,6] in

which conjugate heat transfer is modeled computation-

ally.

The present work addresses the analysis of small-

scale channels with general, curved boundaries. Such

channels are important for a variety of reasons. First,

the fabrication of such channels often does not pro-

duce exact, rectangular cross sections, as evidenced for

example, by the substrate cross sections shown by

Tuckerman [3] and Hoopman [7]. Second, the sharp

corners of rectangular channels inhibit local heat trans-

fer by restricting ¯uid ¯ow. Third, a curved boundary

can signi®cantly increase the surface e�ciencies of high

aspect-ratio ®ns. Channels with curved boundaries
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have not been previously studied because they are not

readily amenable to the straightforward ®n/resistance

networks employed by many researchers in the area

[8,9], or to traditional computational methods [5,6]

such as the ®nite element and ®nite di�erence methods.

The present work utilizes the complex variable

boundary element method (CVBEM) to solve for heat

transfer in ducts with curved cross-sectional bound-

aries. The CVBEM is particularly well suited to such

problems because discretized whole-domain integrals

are path independent and evaluated analytically. Thus,

the formulation is highly accurate, and specialized

treatment of boundary curvature is minimal. Further,

the method provides an inherent means of error esti-

mation for boundary grid re®nement.

For fully developed ¯ow with uniform axial heating,

the governing momentum and energy equations can be

combined, with appropriate assumptions, to form a

single biharmonic equation. The resulting equation is

analogous to that found in the theory of thin-plate

elasticity [10]. Thus, classical work on plate elasticity

[11] for typical boundary shapes is applicable to the

present theory. More recently, Gu and Huang [12]

employed a variation of the complex variable bound-

ary element method to study plate elasticity. Their

development began with Vekua's formula [13] to gen-

erate boundary integral equations. In contrast to

Cauchy's integral formula, Vekua's formula integrates

with respect to the real-valued boundary arc length.

The resulting integrals are more di�cult to evaluate on

curved boundaries than are integrals based on

Cauchy's integral equation. Barbuto and Cotta [14]

used a real-variable integral transform method [15] to

model the ¯ow ®elds in ducts of irregular cross section.

The utility of the integral transform method depends

strongly on the ability to parameterize the boundary

shape.

Boundary methods can be formulated using complex

variables for two-dimensional problems. Early work

on the complex variable boundary element method

was performed by Hromadka and Guymon [16] and

Brevig et al. [17]. A general description of the CVBEM

has been provided by Hromadka [18] and Hromadka

and Lai [19]. Since its introduction, the CVBEM has

been applied to potential problems [20±23], plane and

plate elasticity [12,24], and grid generation [25±28].

The number of applications for the CVBEM will likely

grow in the future.

Nomenclature

a, b channel half-width and half-height, see
Eq. (21) (m)

ak, bk, ck coe�cients in the quadratic spline interp-

olation
@B domain boundary descriptor
c1, c2 constants in Poisson equations, see Eqs.

(4) and (5)
I imaginary part
Jk Jacobian for element k

kf , ks ¯uid and solid thermal conductivities
(W/mK)

K(1) Hagenbach factor, see Eq. (28)
L channel length (m)

n normal boundary coordinate
P ¯uid pressure (Pa)
q0 heat ¯ow per unit area (W/m2)

rx nondimensional cross-sectional thermal
resistance, see Eq. (39)

R real part

R0 total thermal resistance per unit surface
area (K m2/W), see Eq. (18)

R0x cross-sectional thermal resistance per unit

surface area (K m2/W), see Eq. (38)
R0bulk bulk thermal resistance per unit surface

area (K m2/W), see Eq. (41)
s tangential boundary coordinate

t complex ®eld variable
tc conduction thickness, see Fig. 1 (m)
tf ®n half-thickness, see Fig. 1 (m)

Tf , Ts ¯uid and solid temperatures (K)
TB bulk (mixed-mean) ¯uid temperature (K)
u, v real and imaginary parts of the function

w
w complex analytic function
W ¯uid velocity (m/s)

WÇ ' pump work rate per unit transverse
width (W/m)

X, Y, Z horizontal, vertical, and axial coordinates
(m)

z complex source point.

Greek symbols
a boundary surface angle

af ¯uid thermal di�usivity (m2/s)
a � channel aspect ratio, 2a/b
E curvature parameter, see Eq. (21)
W(z ) analytic function, see Eq. (6)

m ¯uid dynamic viscosity (N s/m2)
r ¯uid density (kg/m3)
f(z ) analytic function, see Eq. (6)

c(z ) analytic function, see Eq. (8).

T.S. Fisher, K.E. Torrance / Int. J. Heat Mass Transfer 43 (2000) 113±126114



The present work considers the e�ects of channel
shape on conjugate heat transfer and employs the

CVBEM to obtain numerical solutions. Channel shape
(i.e., curvature) can signi®cantly a�ect the Nusselt
number, friction factor, and entrance-region pressure
drop. All the foregoing parameters in¯uence heat

transfer performance under typical ¯ow constraints
such as ®xed pressure drop or pump work. Further,
the present work includes an accurate prediction of

conjugate heat transfer in ®n-like structures. The com-
putational modeling eliminates many of the approxi-
mations, such as a uniform heat transfer coe�cient

and one-dimensional heat conduction, used by prior
workers [8,9]. The objectives here are to introduce a
new computational method for the modeling of conju-

gate heat transfer in solids with curved-boundary cool-
ing channels and to quantify the e�ects of channel
curvature on the thermal and hydrodynamic perform-
ance of the systems.

2. Mathematical formulation

Small-scale channels can be fabricated by a variety
of techniques [4,7]. We assume here that the channels
are straight and of uniform cross section. A sketch

of a solid substrate and cooling channel is shown in

Fig. 1.

The upper boundary is assumed to be isothermal,

with heat ¯owing from that boundary to the cooling

channel by conduction. The vertical boundaries are

symmetry planes (horizontally repeating). The lower

boundary is rigid and adiabatic. Due to symmetry

about X= 0 in Fig. 1, only half a channel is modeled.

The height and half-width of the channels are b and a,

respectively. The channel wall's half-thickness at the

bottom of the channel is denoted by tf , and the con-

duction thickness between the top of the substrate and

the top of the channel is represented by tc. The length

L of the channel is not shown in the ®gure and is

assumed to be 5 cm unless otherwise stated. A ®nite

channel length L is required to scale the exit tempera-

ture.

In developing a mathematical formulation, several

assumptions are made:

1. The ¯ow is laminar and fully developed thermally

and hydrodynamically.

2. All material properties are constant.

3. Axial conduction in both solid and ¯uid domains is

negligible.

4. The bottom of the system (Y= 0 in Fig. 1) is

capped by a thermally insulating material, resulting

in a normal heat ¯ux of zero.

The ®rst assumption re¯ects the fact that the hydraulic

diameters (Dh04 � area/perimeter) of interest here are

of order 102 to 103 mm, and the associated Reynolds

numbers are of order 102 to 103. Consequently, the

laminar ¯ow assumption is well justi®ed, and the hy-

drodynamic and thermal entrance lengths for air and

water are typically Le0O(10ÿ2 m) or less. Thus, the

fully developed assumption is appropriate. Further, hy-

drodynamic entrance e�ects are estimated from the

fully developed solution by calculating the Hagenbach

factor for the inlet pressure drop.

The second assumption above provides generality,

and allows us to present results in terms of thermal re-

sistances, which otherwise become case-speci®c.

Regarding the third assumption, Weisberg et al. [5]

estimated axial conduction to be less than 1% of the

cross-sectional heat ¯ow. The fourth assumption

re¯ects the reality of small-scale channel fabrication.

Subsequent sections describe the governing

equations and the mathematical outline for the present

complex variable boundary element method. Further

details are available in Fisher [29] or, for the non-con-

jugate duct problem, in Fisher and Torrance [30].

Readers wishing to directly see results should go to

Sections 2.4, 2.6, 2.7 and 3.

Fig. 1. Computational domain for conjugate heat transfer.

Boundary conditions are shown in parentheses. Due to sym-

metry, the computational domain is one-half of the physical

domain.
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2.1. Governing equations

With the foregoing assumptions, the problem
reduces to two dimensions. The conjugate equations
for velocity and temperature become

r2W � c1 �1�

r 4Tf � c1c2 �2�

r 2Ts � 0 �3�

where the Laplace and biharmonic operators involve
only the X±Y coordinates in the plane of Fig. 1. The

subscripts `f ' and `s' denote the ¯uid and solid regions,
and the coe�cients c1 and c2 are given by

c1 � 1

m
dP

dZ
�4�

c2 � 1

af

@Tf

@Z
: �5�

Z is the axial coordinate perpendicular to the plane of
Fig. 1. As shown by Fisher and Torrance [30], the sol-
ution for the temperature of the ¯uid is divisible into

homogeneous and particular parts, resulting in a tem-
perature ®eld described by

Tf � RfW�z� � �zf�z�g � c1c2
64

z2 �z 2 �6�

where z is the complex variable z=X+iY and z is its
complex conjugate. W(z ) and f(z ) are complex analytic

functions, and the second term on the right side of Eq.
(6) is a particular solution to Eq. (2). The ¯uid velocity
W is a function of f(z ) as

W � 4

c2
Rff 0�z�g � c1

4
z �z �7�

where the prime symbol denotes the complex derivative
(d/dz ). The solid temperature ®eld is governed by

Laplace's equation, and therefore admits a solution of
the form

Ts � Rfc�z�g �8�

where c is a complex, analytic function. The analytic
functions W, f, and c constitute the set of unknowns
in the present problem.

2.2. Boundary integral equations

The previous section showed that the solutions for
¯uid velocity, ¯uid temperature, and solid temperature
are expressible in terms of the analytic functions f, W,

and c. The value of a generic, analytic function
w=u+iv can be represented through Plemelj's formula

[31] as

a
2p

w�z� � 1

2pi
ÿ
�
@B

w�t�
tÿ z

dt �9�

where z is a boundary point, a represents the included

angle of the boundary's surface (e.g., a=p/2 if z lies
on a corner of a square domain), and

�
- represents the

Cauchy principal value integral [32]. Eq. (9) expresses
the value of the analytic function w at a boundary

point z in terms of the function's value at other points
on the boundary. Note that the integrand, w(t )/(tÿz ),
becomes singular as the ®eld point t approaches the

source point z. The singularity can be integrated
exactly.
The boundaries of the ¯uid and solid domains are

subdivided into Nf and Ns elements, respectively. For
either the solid or ¯uid domain, the discrete form of
Eq. (9) is

a
2p

wi � 1

2pi

XN
k�1
ÿ
�
@Bk

wk�t�
tÿ zi

dt �10�

where wi is the value of the analytic function at the
boundary points zi, and wk (t ) is an interpolation func-

tion for w on a boundary segment @Bk. Quadratic
spline interpolation is employed to represent the ana-
lytic functions on each element in order to maintain el-

ement-to-element continuity of the function f, which
partially describes the temperature ®eld, as well as its
®rst complex derivative f ', which represents the vel-
ocity ®eld. The interpolation function takes the general

form

wk�t� � ak � bk�tÿ zk� � ck�tÿ zk�2 �11�

where ak, bk and ck are complex constants. The inte-
grand in Eq. (10) becomes singular for k=i, and the

resulting integral is evaluated exactly from its Cauchy
principal value.
In fact, all integrals in Eq. (10) can be evaluated

analytically when combined with the interpolation
function in Eq. (11). The ®nal form of the integrated
boundary integral equation is [29,30]
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wi � wi

2pi
ln
�zi�1 ÿ zi �
�ziÿ1 ÿ zi �

� 1

2pi

X
k 6�i, iÿ1

�wk � w 0k�zi ÿ zk�

� ck�zi ÿ zk�2� ln
�zk�1 ÿ zi �
�zk ÿ zi �

� 1

2pi

XN
k�1
�w 0k � 2ck�zi ÿ zk���zk�1 ÿ zk�

� 1

2
ck��zk�1 ÿ zi �2 ÿ �zk ÿ zi �2�:

�12�

Again, note the absence of numerical quadrature.

Further, each integral is path independent. Thus, each
integral relies only on knowledge of a boundary el-
ement's endpoints (i.e., nodes) and not on the shape of

the path between endpoints. This path independence
makes the present formulation well-suited to the mod-
eling of domains with curved boundaries.
The integrated form of the boundary integral

equation in Eq. (12) includes three vectors of
unknowns, wk, w 'k and ck. The latter vectors are lin-
early related to the ®rst by quadratic spline relations.

Thus, a system of equations of the form Aikwk=0 can
be readily derived from Eq. (12).
Depending on the type of boundary condition at a

given node or element, either the real or imaginary
part of the complex boundary integral equation is
selected as the real-valued boundary integral equation.

The selections of real-valued boundary integral
equations are governed by the temperature and vel-
ocity boundary conditions, as dictated by the `implicit'
formulation of Hromadka and Lai [19]. This section

process produces Nf equations each for f (or velocity)
and W (or ¯uid temperature), and Ns equations for c
(or solid temperature). The discarded boundary inte-

gral equations are used to estimate errors and re®ne
the mesh as described by Fisher and Torrance [30].
This inherent ability to estimate errors is a strong ad-

vantage of the CVBEM as compared to other numeri-
cal methods. Boundary condition equations then
complete the set of 2Nf equations for velocity (or f )
and 2(Nf+Ns) equations for the coupled temperature

®elds (or W and c ).

2.3. Boundary conditions

The boundary conditions for the present problem
are shown in Fig. 1. The subscripts `,n' denote normal

derivatives at the boundary. The boundary conditions
on ¯uid velocity are similar to those described by
Fisher and Torrance [30] and take the form

Dirichlet:
4

c2
Rff 0kg � ~Wk ÿ c1

4
zk �zk �13�

Neumann:

4

c2
Iff 0k�1 ÿ f 0kg �

�
@Bk

�
~W , n ÿ c1

2
Rfeiyn �z g

�
ds

�14�

where the tilde ( Ä ) denotes an imposed boundary con-
dition value. Note that Neumann conditions are inte-

grated [as in Eq. (14)] into `stream function'
conditions, as dictated by the complex variable formu-
lation. The Neumann conditions on ¯uid temperature
along straight segments (Y= 0 and X = 0) of the

boundary can be expressed as

IfWk�1 ÿ Wkg

�
�
@Bk

�
~T , n ÿ @

@n

�
c1c2
64

z2 �z 2 �Rf �zf�z�g
��

ds: �15�

The temperature boundary conditions at the ¯uid/solid
interface are treated at the end of this subsection.
The boundary conditions on solid temperature are

generally simpler than those on ¯uid variables, due to
the fact that the particular solution is zero in the solid
domain. The Neumann conditions on the solid-domain

boundary elements (along X= 0, X=a+tf and
Y = 0) take the general form

Ifck�1 ÿ ckg �
�
@Bk

~T s, n ds �16�

while Dirichlet conditions are expressed as

Rfckg � ~T s: �17�

A Dirichlet condition TÄs=Tmax is imposed on the top
surface of the substrate. The condition represents an

idealization of a practical system and facilitates the cal-
culation of an area-based thermal resistance

R 00 � Tmax ÿ Tinlet

q 00
�18�

where Tinlet is the inlet ¯uid temperature and q0 is the
average heat ¯ow per unit area into the top surface of
the substrate. The presence of a Dirichlet condition
enables a precise calculation of the temperature ®eld.

Prior workers [5] have imposed an idealized Neumann
condition on the top surface. Such an approach
requires special measures to obtain a unique solution

for temperature. In the present work, we choose to
impose the temperature, while the average heat ¯ux is
included in the constant c2. The di�erence between the

two approaches in terms of thermal resistance is negli-
gible for substrates with high thermal conductivities.
Interfacial boundary conditions along the curved
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portion of the boundary are generally more di�cult to

handle. Temperature and heat ¯ux continuity are
imposed on each element of the boundary segment.
The temperature condition Tf=Ts at node k becomes

RfWkg �Rf �zkfkg �
c1c2
64
�zk �zk�2 � Rfckg: �19�

For Neumann conditions, the heat ¯ux condition
q0f=ÿq0s (with q0 based on the outward normal of each
domain) becomes upon integration

ks

kf

Ifck�1 ÿ ckg � IfWk�1 ÿ Wkg

�
�
@Bk

@

@n

�
c1c2
64

z2 �z 2 �Rf �zf�z�g
�

ds:

�20�

In contrast to the entire-domain boundary integral in
Eq. (10), which could be carried out analytically, the

boundary-segment integrals arising from Neumann
boundary conditions cannot. Therefore, all integrals
over each boundary element in Eqs. (14)±(16) and (20)

were evaluated by ®ve-point Gaussian quadrature.

2.4. Shape parameterization

The present work utilizes a parameterized boundary
shape in order to systematically study the e�ects of
curvature on heat transfer. The constrained parameter-

ized shape allows for rounded semi-rectangles, semi-
ellipses, and rounded semi-diamonds. Wei et al. [33]
used the same shape function to study the e�ects of

hole shape on the elasticity of plates.
The following equations de®ne the shape of the

duct's boundary:

x�j� � a

1� E
�cos j� E cos 3j� �21a�

y�j� � b

1� E
�sin jÿ E sin 3j� �21b�

where a and b control the overall width and height of
the duct and ÿ0.12 R E R 0.12 controls the boundary
curvature. The quotient 2a/b0a � de®nes the channel

aspect ratio. The parameter j spans from 0 to p.
Several di�erent shapes for E ranging from ÿ0.12 to
0.12 are shown in Fig. 2. Due to symmetry with
respect to the Y-axis, only one half of the domain is

modeled computationally.
With the boundary shape de®ned, the various

boundary-condition integrals in Section 2.3 can be

evaluated. The integrals take the general form

I �
�
@Bk

K�z, �z � ds �22�

which, for convenience, is converted to a ®xed range
of integration to assist in the use of Gauss points:

I �
�1
ÿ1

K�z�Z�, �z �Z��Jk�Z� dZ: �23�

In Eq. (23), Z is a scalar ranging from ÿ1 to 1, and

Jk (Z ) is a Jacobian, de®ned as

Jk�Z� � 0:5�x , j�Z�2 � y, j�Z�2�0:5�jk�1 ÿ jk�: �24�

On the duct perimeter,

x , j�Z� � a

1� E
�ÿsin j�Z� ÿ 3E sin 3j�Z�� �25a�

Fig. 2. Parameterized channel boundary shapes with ÿ0.12 R E R 0.12. Channel half-width a= 1. Channel half-height b= 5.

Channel aspect ratio a �=2a/b = 0.4.
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y, j�Z� � b

1� E
� cos j�Z� ÿ 3E cos 3j�Z�� �25b�

and

j�Z� � 0:5jk�1ÿ Z� � 0:5jk�1�1� Z�: �26�

Boundary integrals along planes of symmetry or other
straight boundary segments can be evaluated simply.
Eq. (23) still applies, but for straight segments, the

Jacobian is

Jk � 0:5 j zk�1 ÿ zk j : �27�

Note that the Jacobian for straight segments is inde-

pendent of the integration variable Z.

2.5. Solution procedure

The systems of linear equations are solved by LU
decomposition. The computational method described

here was programmed in Fortran 77 and executed on a
Silicon Graphics workstation, model Indy R5000. The
solution sequence is described below:

. formulate the common set of complex boundary
integral equations for f and W;

. formulate the set of boundary condition equations

for f from the velocity boundary conditions;
. assemble and solve the boundary integral and

boundary condition equations for f;
. formulate the set of boundary integral equations for

c;
. formulate the set of boundary condition equations

for W and c from the temperature boundary con-

ditions;
. assemble and solve the boundary integral and

boundary condition equations for the coupled func-

tions W and c;
. transform the three analytic functions f, W and c

into velocities and temperatures.

2.6. Flow constraints

At the beginning of the analysis, a hydrodynamic
constraint is placed on the ¯ow through the system.
Two common constraints are ®xed total pressure drop

(DP ) and ®xed pump work rate per unit transverse (X-
coordinate in Fig. 1) width ( _W

0
). Weisberg et al. [5]

simpli®ed the implementation of ¯ow constraints by

neglecting inlet e�ects on pressure drop. Here, we in-
corporate such e�ects by calculating the Hagenbach
factor

K�1� � DPen

rhW i2=2

� 2

A

�
B

"�
W

hW i
�3

ÿ
�

W

hW i
�2
#

dx dy

�28�

where DPen is the incremental pressure drop due to
entrance region e�ects. This procedure adds some com-
plexity to the problem but improves accuracy.

In order to compute the constrained ¯ow ®eld, the
velocity equation is ®rst normalized as

r2W � � 1 �29�

where W �=ÿmW/(dP/dZ ) is a normalized velocity.

The normalized Poisson equation is then solved as
described above. Note that the normalization has no
e�ect on the homogeneous boundary-condition values
on velocity.

Once the normalized velocity ®eld has been solved,
an area-averaged, normalized velocity hW �i can be
computed. The ®xed pressure-drop constraint is rep-

resented as

DP � ÿLdP

dZ
� K�1�rhWi

2

2
�30�

which can be combined with the normalized velocity
equation

dP

dZ
� ÿm hW ihW �i �31�

to solve for the actual mean velocity as

hWi �

ÿmL
hW �i �

"�
mL
hW �i

�2

�2rDPK�1�
#1=2

rK�1� : �32�

Once the actual mean velocity is known, the pressure
gradient dP/dZ can be calculated from Eq. (31), and

the ®rst constant c1 in the source term of Eq. (2) can
be established.
For a constraint on the pump work rate _W

0
, the

procedure for deriving dP/dZ and the c1 is similar to
that described above. In this case, the constraining
equation can be expressed as

_W
0�a� tf�
A1=2

� hWiDP � mL
hW i2
hW �i �

1

2
rK�1�hWi3 �33�

where A1/2 is one-half of the channel's cross-sectional
area and is evaluated exactly as

A1=2 � pab
1ÿ 3E2

4�1� E�2 : �34�
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The solution for the mean ¯uid velocity from Eq. (33)
is

hWi � F� C 2

9B 2F
ÿ C

3B
�35�

where

B � 0:5rK�1� C � mL
hW �i D �

_W
0�a� tf�
A1=2

F �
�
D

2B
ÿ C 3

27B 3
�

�������
3D
p

18B 2

�����������������������������
27DB 2 ÿ 4C 3
p �

: �36�

Again, once the mean velocity is computed from Eq.
(35), the terms dP/dZ and c1 can be calculated.

For either ¯ow constraint, once the mean velocity is
known, the second constant c2 in the source term of
Eq. (2) can be computed from

c2 � 1

af

dTB

dZ
� q 00�a� tf�

kfA1=2hW i �37�

where TB is the bulk (or mixed-mean) ¯uid tempera-
ture. Once the constants c1 and c2 are known, the sol-

ution for temperature in the solid and ¯uid domains
proceeds by computing the analytic functions W and c.

2.7. Performance metrics

The primary performance metrics in the present
study involve the ratio of temperature rise to areal

heat ¯ux and are expressed in the units K/(W/cm2).
The overall thermal resistance R0 was de®ned in Eq.
(18). R0 can be expanded into a cross-sectional com-

ponent R0x and an axial component R0bulk. The cross-
sectional component is de®ned as

R 00x �
Tmax ÿ TB, out

q 00
�38�

where TB, out is the bulk temperature of the ¯uid at the

exit of a channel. Another metric used in the present
work is the normalized, cross-sectional resistance,
de®ned as

rx � kf

b
R 00x : �39�

To ®rst order, the cross-sectional thermal resistance
depends on geometric variables as

R 00x0a�a� tf �
b

: �40�

The bulk resistance is expressed as

R 00bulk �
TB, out ÿ Tinlet

q 00
: �41�

The functional dependence of the bulk resistance
depends on the type of ¯ow constraint. For ®xed

pumping power, the ®rst-order dependence is

R 00bulk0

���������������������
L3�a� tf �
a3b _W

0

s
: �42�

For ®xed pressure drop, the ®rst-order dependence is

R 00bulk0
L2�a� tf �
a3bDP

: �43�

The relations in Eqs. (40), (42) and (43) suggest that
the total thermal resistance can be minimized with
respect to the channel half-width a. The cross-sectional
resistance increases quadratically with a, while the bulk

resistance decreases as either aÿ1 (for ®xed _W
0
) or aÿ2

(for ®xed DP ) with increasing channel half-width.
Optimization with respect to channel width has been

previously considered by several workers [1±4,8,9].
Here, we present some results on optimization with
respect to a, but pay more attention to second-order

e�ects, including optimal ®n thicknesses tf and bound-
ary shapes.

3. Results and discussion

The computational method described above can be
applied to an extremely broad range of practical sys-
tems. We limit the present work to systems involving

silicon (ks=149 W/m K) and nickel (ks=90 W/m K),
and either water or air as the coolant. The constant
¯uid properties are evaluated at 300 K and are shown
in Table 1. The ®xed substrate dimensions in the

present work are tc=500 mm, b= 1000 mm, and
L = 5 cm; and the inlet ¯uid temperature is always
taken to be 208C. The channel half-width a, ®n half-

thickness tf and the curvature parameter E are varied
to study their e�ects on thermal performance. Most of
the results focus on thermal resistances of the order

R001 K/(w/cm2), which is consistent with the pro-
jected requirements of microprocessor cooling systems
[34]. The accuracy of the results herein was ensured by

Table 1

Fluid properties at 300 K

Fluid m (N s/m2) kf (W/m K) r (kg/m3) cp (J/kg K)

Water 855 � 10ÿ6 0.613 997 4179

Air 185 � 10ÿ7 0.0262 1.16 1007
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imposing a maximum internal error estimate (see [30])
of E = 5 � 10ÿ6 for the velocity solution.

3.1. Local temperature ®elds

Observations of local temperature ®elds in the solid

and ¯uid regions can provide qualitative insights into
the transfer of heat from the top of the substrate,
through the ®n-like channel walls, and into the con-

vecting ¯uid. Exit temperature pro®les for a silicon
and nickel substrate are shown in Fig. 3. For each sub-
strate, the pump work is ®xed at _W

0
=1 W/m, with a

surface heat ¯ux of q0=50 W/cm2. The channel and

®n half-widths are 200 and 100 mm, respectively, while
the curvature parameter is E=ÿ0.12 (corresponding to
a rounded rectangle).

Because the pump work and heat ¯ux are ®xed, the
bulk resistances are the same in parts (a) (silicon) and
(b) (nickel) of Fig. 3. Consequently, the bulk ¯uid tem-

peratures are equal. The heat conduction at the top of
the substrates is seen to be nearly one-dimensional.
Near the top of the channel in the solid region, the iso-

thermal contour lines become curved, thus illustrating
the constriction of heat ¯ow into the ®n. The conduc-
tion in the ®n is nearly one-dimensional, as illustrated

by the nearly horizontal isotherms.
The temperature ranges in the di�erent substrates il-

lustrate the e�ect of solid thermal conductivity on ther-

mal performance. Within the silicon substrate [see Fig.
3(a)], the temperatures range from approximately 58 to
658C, while the range in the nickel substrate is 57 to

688C. The distances between 18C temperature incre-
ments in the ®n section of the nickel substrate are sig-
ni®cantly smaller than those of the silicon substrate.
However, the ®n temperatures for both substrates are

considerably higher than the bulk ¯uid temperature,
thereby indicating high rates of heat transfer over the
entire ®n surfaces. The relative di�erence in overall

thermal resistance R0 between parts (a) and (b) of Fig.
3 is less than 10%.

3.2. E�ects of channel width

Channel width has a signi®cant e�ect on overall

Fig. 3. Exit temperature contours in solid and ¯uid regions. Fluid=water. Pump work _W
0
=1 W/m. Surface heat ¯ux q0=50 W/

cm2. Channel length L = 5 cm. Conduction thickness tc=500 mm. Channel height b= 1000 mm. Channel curvature E=ÿ0.12.
Channel half-width a= 200 mm. Fin half-thickness tf=100 mm. (a) Silicon substrate. (b) Nickel substrate.
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heat transfer due to the functional dependencies of the

cross-sectional and bulk thermal resistances shown in

Eqs. (40) and (43). Fig. 4 contains a graph of overall

thermal resistance as a function of channel half-width

for (a) ®xed pump work and (b) ®xed pressure drop.

In both parts, the substrate is made of silicon, the ¯uid

is water, the ®n half-thickness is one-half the channel

half-width, and the curvature parameter is E=ÿ0.12.
Optimal channel half-widths in the range

75 mm R a R 225 mm are evident for both parts of the

®gure. For small half-widths a, the total thermal resist-

ance is dominated by the bulk resistance, which goes

as aÿ1 and aÿ2 in Fig. 4(a) and Fig. 4(b), respectively.

As the channel half-width increases, the cross-sectional

resistance becomes more signi®cant relative to bulk re-

sistance, resulting in a minimum total resistance. The

optimal half-width increases as the driving force (either

pump work or pressure drop) decreases. The more pro-

nounced minima for the ®xed pressure drop constraint

are caused by the aÿ2 dependence of bulk resistance

compared to the aÿ1 dependence for the ®xed pump

work constraint.

The driving force (either pump work or pressure

drop) necessary to produce su�cient cooling rates for

high-power devices is seen to be quite reasonable. The

results in Fig. 4 indicate that, for optimal geometries,

heat ¯uxes greater than 100 W/cm2 are achievable for

a temperature rise of 508C above the ambient for mod-

est driving forces of either _W
0
=10 W/m or

DP = 10,000 Pa. Previous workers [1,4] have focused

more attention on larger driving forces, for which

developing or turbulent ¯ow can produce lower resist-

ances than fully developed, laminar ¯ow. However, the

thermal resistance levels shown in Fig. 4 are consistent

with the projected cooling needs of high power elec-

tronic devices [34].

The thermal performance of air-cooled heat sinks is

signi®cantly worse than that of water-cooled heat

Fig. 4. Overall thermal resistance R0 as function of channel

half-width a. Fluid=water. Substrate=silicon. Fin half-thick-

ness tf=0.5a. Channel height b= 1000 mm. Channel length

L= 5 cm. Conduction thickness tc=500 mm. Curvature par-

ameter E=ÿ0.12. (a) Fixed pump work _W
0
. (b) Fixed press-

ure drop DP.

Fig. 5. Overall thermal resistance R0 as function of channel

half-width a and pump work _W
0
. Fluid=air.

Substrate=silicon. Fin half-thickness tf=0.5a. Channel height

b = 1000 mm. Channel length L = 5 cm. Conduction thick-

ness tc=500 mm. Curvature parameter E=ÿ0.12.
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sinks. A graph of thermal resistance vs channel half-
width is shown in Fig. 5, in which the ®xed geometric
parameters are identical to those in Fig. 4. Each curve

in Fig. 5 represents a ®xed value of pump work. Even
though the input work rates are much higher than
those in Fig. 4 for water, the resulting thermal resist-
ances for air are much higher. To achieve signi®cantly

lower resistances, higher work rates and/or longer ®ns
would be required. The resulting ¯ow conditions
would likely fall into the developing or turbulent

regimes, as described, for instance, by Philips [4].

3.3. E�ects of channel shape and ®n thickness

We now focus attention on the e�ects of the curva-
ture parameter E and its relationship with the ®n half-

thickness tf . The channel shape in¯uences both the
cross-sectional resistance R0x (or rx in nondimensional
form) and the bulk resistance R0bulk.
For rectangular channels with high aspect ratios,

Tuckerman [3] analyzed (and Weisberg et al. [5] con-
®rmed via computations) that the minimum cross-sec-
tional resistance occurs when the channel width

relative to the channel period is a/(a+tf )=0.5.
However, this simple relationship may not be valid for
®ns of variable cross section. Fig. 6 illustrates the re-

lationship between the cross-sectional resistance rx and
the relative channel width a/(a+tf ) for several di�erent
values of the curvature parameter E. For all curves, the
channel aspect ratio is a �02a/b = 0.1, and the ther-
mal conductivity ratio is ks/kf=243.
The results in Fig. 6 con®rm the minimum at a/

(a+tf )=0.5 for the rounded-rectangular boundary

shape (E=ÿ0.12). However, as the boundary becomes

more curved with increasing E, the minimum shifts

toward larger relative channel widths. For the elliptical

shape (E=0.00), the minimum occurs at a relative

channel width of 0.58. This shift suggests that, with

curved channel boundaries, a given substrate may con-

Fig. 6. Scaled, cross-sectional thermal resistance rx as function

of relative channel width a/(a+tf ) and curvature parameter E.
Channel aspect ratio a �=0.1. Conductivity ratio ks/kf=243.

Relative substrate height (b+tc)/b = 1.5.

Fig. 7. Overall thermal resistance R0 as function of ®n half-

width tf and curvature parameter E. Fixed pump work _W
0
=1

W/m. Fluid=water. Contour values represent thermal resist-

ance. Channel half-width a= 150 mm. Channel height

b = 1000 mm. Channel length L = 5 cm. Conduction thick-

ness tc=500 mm. (a) Silicon substrate. (b) Nickel substrate.
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tain more channels and might therefore produce better

overall thermal performance.

The relationship between channel curvature and ®n

thickness can be further illustrated by considering

representative contour maps. Fig. 7 contains contours

of overall thermal resistance as a function of channel
curvature and ®n thickness for a ®xed pump work rate

of WÇ '=1 W/m and a channel half-width of
a = 150 mm, which is close to the optimum shown in
Fig. 4. The coolant ¯uid is water.

Along the top left portion of the ®gure (i.e., for
nearly rectangular channels with large ®n thickness),
the thermal resistance decreases with decreasing ®n

thickness because the density of coolant channels (and
the associated convective surface area) increases.
However, as the ®n thickness decreases further, the ®n

e�ciency decreases, resulting in an optimal ®n thick-
ness. The optimal ®n thickness is smaller for the silicon
substrate [Fig. 7(a)], due to its higher thermal conduc-
tivity, than for the nickel substrate [Fig. 7(b)].

Increasing the channel curvature decreases the opti-
mal ®n thickness for both substrates in Fig. 7. For a
rounded-rectangular boundary (E=ÿ0.12), the optimal

®n half-thicknesses are approximately 35 and 45 mm
for silicon and nickel, respectively. However, for
E=ÿ0.06, the corresponding optima are 15 and 25 mm.

Further, for a given ®n half-thickness, the overall ther-
mal resistance tends to increase by 10 to 15% from
rounded-rectangular channels (E=ÿ0.12) to elliptical

channels (E=0.00). Although increased channel curva-
ture tends to decrease thermal performance, the results
in Fig. 7 indicate that the e�ect is small and should
not be a major concern when using fabrication tech-

niques that produce curved channel boundaries.
For ®xed pressure drop, the relationship between

curvature and ®n thickness remains similar to that

described above. Fig. 8 contains contours of overall
thermal resistance as a function of channel curvature
and ®n thickness for a ®xed pressure drop of

DP = 5000 Pa. In this case, thermal resistance
increases more rapidly with large, increasing ®n thick-
nesses due to the linear relationship R0bulk0 tf [see Eq.
(43)] compared to the square-root dependence for ®xed

pump work. Similarly, increased channel curvature
(which increases the mean ®n thickness) causes a
slightly larger decrease in thermal performance for a

given ®n thickness. In the optimal region, increased
channel curvature again signi®cantly decreases the op-
timal ®n half-thickness. The contour maps included

here should allow designers to better understand the
e�ects of channel curvature, which is sometimes un-
avoidable, and ®n thickness on overall thermal per-

formance.

4. Summary and conclusions

Conjugate heat conduction and convection have

been studied for fully developed ¯ow in substrates with
embedded channels with curved cross-sectional bound-
aries. The complex variable boundary element method

Fig. 8. Overall thermal resistance R0 as function of ®n half-

width tf and curvature parameter E. Fixed pressure drop

DP = 5000 Pa. Fluid=water. Contour values represent ther-

mal resistance. Channel half-width a= 150 mm. Channel

height b = 1000 mm. Channel length L = 5 cm. Conduction

thickness tc=500 mm. (a) Silicon substrate. (b) Nickel sub-

strate.
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provides a relatively straightforward and accurate
means of analysis for channel cross sections with high

curvature and high aspect ratios. The computational
method is well-suited for the problems considered here
because the whole-domain boundary integrals (both

singular and non-singular) are evaluated exactly and
are path independent. However, Neumann boundary
condition integrals over a boundary segment require

numerical quadrature.
The results indicate that, as compared to rectangular

channels, curved boundaries can reduce the optimal ®n

thickness (see Fig. 6), thereby reducing the separation
between channels. In general, the overall thermal re-
sistance produced by a curved channel boundary is
slightly higher than that of a rectangular channel with

an equal ®n-tip thickness (see Figs. 7 and 8). However,
when optimized, the two types produce virtually the
same thermal resistance. The computational method

employed here could be extended to other thermal
problems for which the accurate modeling of curved
boundaries is necessary.
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